Difluorobenzocyclooctyne: Synthesis, Reactivity, and Stabilization by β -Cyclodextrin

Ellen M. Sletten,[†] Hitomi Nakamura,[†] John C. Jewett,[†] and Carolyn R. Bertozzi*,[†],^{‡,§,II}

Departments of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, and The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Current Literature Presentation

September 25th, 2010 Nolan Griggs, Ph.D.

Bioorthogonal Reactions - Overview

Definition: "Chemical reactions that do not interfere with biological processes."

Native Chemical Ligation (NCL) - Kent and co-workers, 1994:

Staudinger Ligation - Bertozzi and co-workers, 2000:

Reveiw: Bertozzi, C.R., Sletten, E.M.; Angew. Chem. Int. Ed. 2009, 6974.

Cyclooctynes - Overview

- Smallest stable, unsubstituted cycloalkyne
- Alkyne bond angle = ~156°
- Strain energy = ~18 kcal/mol
- The difference in hydrogenation enthalpies of cyclooctyne versus 4-octyne is ~10 kcal/mol¹

Note: 3,3,7,7-tetramethylcycloheptyne has been prepared and isolated:

Kimling, H., Krebs, A.; Angew. Chem. Int. Ed. 1971, 509.

1. Turner, R.B., Mallon, B.J. et al.; J. Am. Chem. Soc. 1973, 790.

Reactions of cyclooctynes:

Radical Reactions:

Cycloadditions:

Meier, H. Synthesis, 1972, 5, 235.

Krebs, A., Wilke, J.; Topics in Current Chemistry, 1983, 109, 189-233

Synthesis of Cyclooctynes

• Oxidative and Thermal Decomposition:

• Elimination:

$$X \longrightarrow LiNR_2$$

• Examples from Bertozzi lab:

Jewett, J.C., Bertozzi, C.R.; Chem. Soc. Rev. 2010, 39, 1272.

Copper-free Click Chemistry with Cyclooctynes

• Cyclooctynes react with azides to give triazole products without the use of Cu catalysis:

"explosionsartig" - like an explosion Krebs, A., Wittig, G.; *Chem Ber*. **1961**, 94, 3260.

• Further Activation - kinetic study:

$$\frac{BnN_3}{d\text{-Methanol}} \qquad \frac{N}{N} \qquad k_{rel} = 1$$

Bertozzi, C.R. et al.; *ACS Chemical Biology*, **2006**, 1(10), 644-648 Jewett, J.C., Bertozzi, C.R.; Chem. Soc. Rev. 2010, 39, 1272.

Applications - Bioorthogonal Reactions Using Cyclooctynes

Link, A.J., et al. *PNAS* **2006**, 103, 10180 See also: Fernandez-Suarez, M., et al.; *Nat. Biotech.* **2007**, 25, 1483 Nessen, M.A., et al.; *J. Proteome Res.* **2009**, 8, 3702

• Lipid Labelling:

Neef, A.B., Schultz, C.; Angew. Chem. Int. Ed. 2009, 48, 1498.

Glycan imaging:

• Applied in living mice and monitored in real time.

Baskin, J.M et al. *PNAS* **2007**, 104, 16793

Title Paper - Difluorobenzocyclooctyne - Synthesis

OCT DIFO DIBO DIFBO
$$k_{\text{rel}} = 40$$
 $k_{\text{rel}} = 30$ $k_{\text{rel}} = 110$

1-benzosuberone

hexylamine, TFA (cat)
 Dean Stark, cyclohexane

AlMe₃, TMSCHN₂

CH₂Cl₂, -78 °C

97%

2. Selectfluor then HCI (3M) 70 % - 2 Steps

TMS OF
$$F$$
 KHMDS, Tf_2O , THF F CsF CsF $Unstable$

Title Paper - Difluorobenzocyclooctyne - Reactivity

• To test if DIFBO was indeed formed, in situ trapping with benzyl azide was performed:

Title Paper - Difluorobenzocyclooctyne - Stabilization by β -Cyclodextrin

- Isolated as a stable, white powder
- Characterized as the inclusion complex using extensive solution and solid-state NMR techniques

Title Paper - Proposed Mechanism for the Formation of Dimers 13 and 14

$$2X \qquad \qquad \downarrow \qquad$$

- The formation of both dimers raises interesting questions:
 - 1. Does the dimerization event occur selectively inside the γ -cyclodextrin cavity?
 - 2. Can the γ -cyclodextrin cavity accomidate two molecules of BIFBO?
 - 3. What is the rate difference between the trimerization event and reaction with O_2 ?

Title Paper - Conclusions and Significance

- A new substituted cyclooctyne (DIFBO) has been discovered with drastically superior kinetics in 2+3 cycloadditions with benzyl azide.
- Due to the enhanced reactivity of DIFBO, complexation with b-cyclodextrin was found to stabilize DIFBO allowing for easy storage and manipulation.

• The inclusion complex of DIFBO and γ -cyclodextrin produced two compounds presumed to arise from a single antiaromatic intermediate, thus providing a possible means to further study antiaromaticity.

9/26/2010